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Aims of our research:

To improve speech processing systems (e.g., for assistive devices)
» To better understand (and/or model) our auditory system

Research is based on

 relation between the auditory system and machine listening
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Improving automatic speech processing based
on "auditory inspiration”

Overview
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H Automatic speech recognition (ASR)
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,How to wreck

Feature

Speech signal extraction

a nice
beach”

Classification

« Feature: Carries information
relevant for recognition

* Should be invariant to noise,
reverberation (but often isn‘t)

« Standard features: Mel-frequency
cepstral coefficients (MFCCs)

Transcript

» Classification: Which word /
phoneme was produced?

» Training: Models for words and
sub-word units

« Standard recognizers: Hidden
Markov Modelle (HMMs), neural

networks
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Neurons in the primary auditory cortex of mammals are sensitive
to specific spectro-temporal stimuli

Spectro-temporal Gabor filters serve as model for
spectro-temporal receptive fields (STRFs)*
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Qiu, A., Schreiner, C. & Escabi, M., 2003. Gabor analysis of auditory midbrain receptive fields: spectro-temporal and binaural composition.

Journal of Neurophysiology, 90 (1), pp.456—476.
deCharms, C., Blake, D. Merzenich, M.M., 1998. Optimizing sound features for cortical neurons. Science, 280 (5368), pp.1439-1444.
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Meyer, Kollmeier (2011). "Robustness of spectro-temporal features against intrinsic and extrinsic variations in
automatic speech recognition”, Speech Communication 53 (5).
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Filter bank of Gabor features: Evenly cover physiologically
relevant modulation frequencies
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Schadler, Meyer, Kolimeier, (2011). "Spectro-temporal modulation subspace-spanning filter bank features for
robust automatic speech recognition®, JASA 131.

Meyer, Spille, Kollmeier, Morgan (2012). “Hooking up spectro-temporal filters with auditory-inspired
representations for robust automatic speech recognition, in Proc. Interspeech.
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The auditory approach to speech processing
often improves robustness of ASR systems

...but there is still quite a gap between HSR and ASR.
Can ASR still be useful for models of human
speech perception?
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1 Improving automatic speech processing based
on ,auditory inspiration®

2 Models of
speech intelligibility

3 Models of
speech perception and cortical correlates
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A good model of human speech perception...

...could be used to evaluate speech compression algorithms
(e.qg., “Does the proposed algorithm decrease speech

intelligibility”)
...could predict performance of new hearing aid algorithms

...without the need of performing (expensive) listening
experiments.
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Test utterances A
. Oldenburg logatome corpus (3,600 non-words) G |
~Added stationary, speech-shaped noise

| |

Human speech recognition Automatic speech recognition
« 6 normal-hearing listeners = Three different feature types
. Signal-to-noise ratio: -6 dB = Wide range of SNRs
« ~21k responses Y« Classifier: Hidden Markov

?9 Model (HMM) 'l
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Accuracies in HSR and ASR
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Correlation of phoneme scores
in HSK and ASR
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Correlation of phoneme scores

Feature types in HSR and ASR
Mel-frequency cepstral coefficients _ 0.9 —A—MFCC
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Correlation of phoneme scores

Feature types in HSR and ASR
Mel-frequency cepstral coefficients 0.9 —A—MFCC
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Perceptual linear prediction
coefficients (PLP)

Rasta-PLP (Relative spectra PLP)

Correlation with human data
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Correlation of phoneme scores

Feature types in HSR and ASR
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Correlation of phoneme scores

Feature types in HSR and ASR
Mel-frequency cepstral coefficients 0.9 —A—MFCC
(MFCC) 0.8} ///.\\\\ _:__ ;I;Z,ta—PLP

Perceptual linear prediction
coefficients (PLP)

Rasta-PLP (Relative spectra PLP)

Features with higher “auditory
iInfluence™: better predictions | | ,
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ASR is in principle suitable to SNR for ASR / dB
model phoneme confusions

Correlation with human data
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What can we do to improve the predictions of speech intelligibility?

Speech signal
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Acoustic
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Classification
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What can we do to improve the predictions of speech intelligibility?
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Original training: Use utterance with
Label corresponding label
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What can we do to improve the predictions of speech intelligibility?

e

v v
Sy o —
LI - | ‘> w}
Training signal ;g;zlrggs Models
\ /
Lg]

[O nwol

Perceptual training: Replace
Listener’s PORET ’
/Labé\ labels with listener’s response
response
7 \




Modelling human speech perception
o universitat
in OLDENBURG

4all

a) Original training b) Perceptual training
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Comparison of original and perceptual training:
Best correlation increased from 0.80 to 0.89 (p < 0.01)
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2 Models of speech intelligibility can profit
from methods used in speech research.

...but we need lots of listeners responses
to continue with perceptual training for large scale models
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3 Models of
speech perception and cortical correlates
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Sound wave Spectrogram Modulation spectrum
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» Cooperation with the Neuropsychology Lab (Jochem Rieger)
* \What speech features are represented in human cortex?
 How are these speech features represented?
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» Direct subdural recordings * Focus on posterior superior
from patients with intractable temporal gyrus (pSTG)
epilepsy (we aim for N >= 5) electrodes

« 2recording sites (Berkeley
and Houston)
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o 210 sentences (105 per experimental condition)
o Re-recording of English matrix test
o Task: Did the target word occur in the sentence?

a b c d e

Peter got three large desks
Kathy sees nine small chairs
Lucy bought seven old tables
Alan gives eight dark toys
Rachel sold four heavy spoons
William prefers nineteen  green windows
Steven has two cheap sofas
Thomas kept fifteen pretty rings
Doris ordered twelve red flowers
Nina wants sixty white houses
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Most positive significant correlations are found in posterior
superior temporal gyrus in high gamma band (70-110 Hz)
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correlations
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The auditory approach to speech processing
often improves robustness of ASR systems

2 Models of speech intelligibility can profit
from methods used in speech research.

3 Log energy is a decent Oth feature for analyzing
activity data obtained with electrocortography.
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