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Outline
Part I. Sources of perceptual variability in consonant
perception
= Experimental data analysis
= Based on perceptual distance
e Part Il. Modeling consonant perception

= Audibility and modulation front ends
= Template-matching back end

= Evaluation of model predictions



Part I.
Sources of perceptual variability in
consonant perception
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Consonant perception measurement

* Non-sense short-term stimuli

* Consonant-vowel combinations (CVs)
like /ki/ in noise

* Percentage of correct responses
* Percentage of confusions

* Considered per consonant individually

» No effects of lexicon, context, or syntax

> Detailed measurement of low-level
speech perception
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Experimental approach
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Large variability observed in responses of NH listeners due to...?

» Source-induced variability

1. Speech-induced variability
(across talkers / within talkers)

2. Noise-induced variability

» Receiver-related variability

1. Across-listener variability

2. Within-listener variability
(internal noise)

» Investigated based on

Different speech tokens for same CV
(different talkers / same talker)

Same speech token, different
frozen noise tokens

» Investigated based on

Physically identical stimuli
(different listeners)

Physically identical stimuli
(given listener, test versus retest)



Experimental results — Speech-induced variability
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Experimental results — Speech-induced variability
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Experimental results — Noise-induced variability

Speech token /gi/ mixed with...
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Experimental results — Receiver-related variability

one specific token of /ni/ + frozen noise

Within Iilsteners

Across listeners
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Analysis — Perceptual distance calculation

presented

Basic principle

responded
/b] | /v/
sl |6 2
s2 |3 |5

Angular distance
D(p,,p,)

Can be used to compare any pair of responses

of arbitrary dimensionality!
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Analysis — Perceptual distance calculation

* 15-dimensional vector space (15 consonants as response alternatives)
e C(Calculated based on individual listener responses:
» Across CVs (reference for maximal distance)

» Source-induced variability:

* Across talkers for stimuli of
L. the same
 Within talkers - .
phonetic
* Across frozen-noise tokens identity

» Receiver-related variability:
* Across listeners

for physically
e Within listeners (baseline for minimal distance) identical stimuli
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Analysis — Perceptual distance

Perceptual distance in %
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Implications for experimental design

“Global” experiment:
» Avoid bias due to individual speech tokens, noise tokens, and listeners
» Present many speech tokens per consonant in random noise to many listeners

» Average across speech tokens and listeners

“Detailed” experiment (investigating consonant cues):
» Evaluate responses for each speech token separately
» Use unique combinations of speech tokens and noise tokens (across SNRs)

» Evaluate responses for each listener individually



Part Il.
Modeling consonant perception




Motivation

Macroscopic speech intelligibility models

» Prediction of average recognition (SRTs)

Modulation masking (more recent
Audibility (classical) gl )

Depth and rapidity of the amplitude

Analysis of speech-to-noise energy in fluctuations in the noisy speech envelope

spectral bands

Speech Transmission Index — STI
Articulation Index — Al P

speech-based Envelope Power Spectrum

Speech Intelligibility Index — SlI Model — SEPSM

Microscopic consonant perception modeling
» Prediction of consonant-specific recognition and confusions

Which macroscopic modeling concept is more suitable for consonant
perception modeling — audibility or modulation masking?
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Model description — Audibility front end (Al, Sll)

Temporal Envelope
outputs extraction

|

BM filtering

22 gammatone filters, logarithmically spaced between 63 Hz and 8 kHz

- Pt fy)
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Model description — Modulation front end (STI, sEPSM)

Temporal Envelope Modulation

BM filtering 7 outputs extraction filtering
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22 gammatone filters, logarithmically spaced between 63 Hz and 8 kHz

9 modulation filters, logarithmically spaced between 1 Hz and 256 Hz
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Model description — Basic approach for back end

Templates SIRIEsENtee Templates
P(C1|S)="? & ‘ P(CL|S)=">
P(C2 | S)="? P(C2 | S)="?
————————— Icomparel—————————
Internal Features
representation P/P,,

Al I I =IIE NI S S =S -

The “average listener” The model
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Model description — Overall modeling scheme

Test signal l /bi/ + N b—>
. Front
/di/ + N | p
Templates
or
- P
) env
/vi/ + N | ‘

Find
best
match

—> p (/bi/ | /bi/+N)

—> p (/di/ | /bi/+N)

e/

—> p (/vi/ | /bi/+N)

Calculated 10 times (noise always newly generated)

Model knows:

» Clean test speech token

» Speaker

» Noise type (white noise)

» Signal-to-noise ratio

Model doesn‘t know:

> Noise waveform

» Articulatory variability within CVs

(uses only one template for each CV)
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> P: far less sensitive than listeners

> P_,.: slightly more sensitive than listeners

» Modeled psychometric function slopes too steep (both front ends)
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Model predictions — Recognition and confusions

Stimuli
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Behavioural data

O Modeled data based on P env

®>7% @ >15% @ >30% @ >40% ‘> 50%

underestimation of recognition / confusions only partly captured
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good prediction of recognition / confusions only partly captured
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Part Il. Summary

 Modulation front end seems to capture relevant features for consonant

perception better than audibility front end

 Well-predicted using modulation front end:
v" Grand average SRT

v Consonant-specific recognition

* Room for improvement - modulation front end:
¢ Slopes of predicted psychometric functions too steep

¢ Confusion predictions unsatisfactory
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Future work

 Comparison of perceptual distance and auditory-feature distance
» For spectro-temporal representation

» For modulation-domain representation
* Inclusion of articulatory variability in modeling framework

* Inclusion of internal-noise term and language-specific bias term in modeling
framework
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Thank you for your attention!



