Computational speech segregation based on an auditory-inspired modulation analysis

Tobias May Torsten Dau

Centre for Applied Hearing Research Department of Electrical Engineering Technical University of Denmark

8.1.2015

Segregation in the time-frequency (T-F) domain ₩

The concept of the ideal binary mask (IBM):

1 Segmentation: Decompose input into individual T-F units

Segregation in the time-frequency (T-F) domain [≇]

The concept of the ideal binary mask (IBM):

- **1** Segmentation: Decompose input into individual T-F units
- **2** Grouping: Identify reliable T-F units based on a priori SNR

Segregation in the time-frequency (T-F) domain [₩]

The concept of the ideal binary mask (IBM):

- **1** Segmentation: Decompose input into individual T-F units
- **2** Grouping: Identify reliable T-F units based on a priori SNR

Applications of the IBM:

 Improve speech intelligibility in noise (Brungart et al., 2006; Li and Loizou, 2008; Kjems et al., 2009)

Segregation in the time-frequency (T-F) domain

The concept of the ideal binary mask (IBM):

- **1** Segmentation: Decompose input into individual T-F units
- **2** Grouping: Identify reliable T-F units based on a priori SNR

Applications of the IBM:

- Improve speech intelligibility in noise (Brungart et al., 2006; Li and Loizou, 2008; Kjems et al., 2009)
- Automatic speech recognition and speaker identification (Cooke et al., 2001; May et al., 2012)

? Influence of feature representation

- ? Influence of feature representation
- ? Generalization to *unseen* acoustic conditions

- ? Influence of feature representation
- ? Generalization to *unseen* acoustic conditions
- ? Contribution of spectrotemporal context

- ? Influence of feature representation
- ? Generalization to *unseen* acoustic conditions
- ? Contribution of spectrotemporal context

 Recent studies exploit between 45-90 feature dimensions (Kim *et al.*, 2009; Han and Wang, 2012; Wang and Wang, 2013; Healy *et al.*, 2013)

- Recent studies exploit between 45-90 feature dimensions (Kim et al., 2009; Han and Wang, 2012; Wang and Wang, 2013; Healy et al., 2013)
 - Contribution of individual features is difficult to assess

- Recent studies exploit between 45-90 feature dimensions (Kim et al., 2009; Han and Wang, 2012; Wang and Wang, 2013; Healy et al., 2013)
 - Contribution of individual features is difficult to assess
- All studies used linear amplitude modulation spectrogram (AMS) features (Kollmeier and Koch, 1994; Tchorz and Kollmeier, 2003)

- Recent studies exploit between 45-90 feature dimensions
 (Kim *et al.*, 2009; Han and Wang, 2012; Wang and Wang, 2013; Healy *et al.*, 2013)
 - Contribution of individual features is difficult to assess
- All studies used linear amplitude modulation spectrogram (AMS) features (Kollmeier and Koch, 1994; Tchorz and Kollmeier, 2003)
 - Not consistent with psychoacoustic data on modulation detection (Bacon and Grantham, 1989; Dau *et al.*, 1997; Ewert and Dau, 2000)

- Recent studies exploit between 45-90 feature dimensions
 (Kim *et al.*, 2009; Han and Wang, 2012; Wang and Wang, 2013; Healy *et al.*, 2013)
 - Contribution of individual features is difficult to assess
- All studies used linear amplitude modulation spectrogram (AMS) features (Kollmeier and Koch, 1994; Tchorz and Kollmeier, 2003)
 - Not consistent with psychoacoustic data on modulation detection (Bacon and Grantham, 1989; Dau *et al.*, 1997; Ewert and Dau, 2000)

Approach:

1 Analyze role of modulation features for speech segregation

- Recent studies exploit between 45-90 feature dimensions
 (Kim *et al.*, 2009; Han and Wang, 2012; Wang and Wang, 2013; Healy *et al.*, 2013)
 - Contribution of individual features is difficult to assess
- All studies used linear amplitude modulation spectrogram (AMS) features (Kollmeier and Koch, 1994; Tchorz and Kollmeier, 2003)
 - Not consistent with psychoacoustic data on modulation detection (Bacon and Grantham, 1989; Dau *et al.*, 1997; Ewert and Dau, 2000)

Approach:

1 Analyze role of modulation features for speech segregation

2 Compare linearly- and logarithmically-scaled modulation filters

() Compute spectrogram based on $4\,\mathrm{ms}$ segments

- 1 Compute spectrogram based on $4 \, \mathrm{ms}$ segments
- 2 Analyze 25 auditory filters between 80 and $8000\,\mathrm{Hz}$

- $oldsymbol{0}$ Compute spectrogram based on $4\,\mathrm{ms}$ segments
- ${f 2}$ Analyze 25 auditory filters between 80 and $8000\,{
 m Hz}$
- 8 Apply modulation filterbank

- () Compute spectrogram based on $4\,\mathrm{ms}$ segments
- 2 Analyze 25 auditory filters between 80 and $8000\,\mathrm{Hz}$
- 8 Apply modulation filterbank

Speech segregation system:

▶ GMM classifier trained with linear or logarithmic AMS features

Speech segregation system:

▶ GMM classifier trained with linear or logarithmic AMS features

Training:

- 100 HINT sentences
- mixed at -5, 0, 5 dB SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory

Speech segregation system:

GMM classifier trained with linear or logarithmic AMS features

Training:

- 100 HINT sentences
- mixed at -5, 0, 5 dB SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory

Testing:

- 60 HINT sentences
- mixed at $-5 \,\mathrm{dB}$ SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory (unknown realizations)

Speech segregation system:

GMM classifier trained with linear or logarithmic AMS features

Training:

- 100 HINT sentences
- mixed at -5, 0, 5 dB SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory

Testing:

- 60 HINT sentences
- mixed at $-5 \,\mathrm{dB}$ SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory (unknown realizations)

Evaluation:

 \checkmark Measure HIT-FA, which correlates with speech intelligibility

Contribution of individual modulation filters

• Noisy speech at $-5 \, dB \, SNR$

How to estimate the IBM in realistic scenarios?

- Influence of feature representation
- ? Generalization to *unseen* acoustic conditions
- ? Contribution of spectrotemporal context

How to estimate the IBM in realistic scenarios?

- Influence of feature representation
- ? Generalization to *unseen* acoustic conditions
- ? Contribution of spectrotemporal context

Segregation system:

GMM classifier trained with linear or logarithmic AMS features

Training:

- 100 HINT sentences
- mixed at -5, 0, 5 dB SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory

Testing:

- 60 HINT sentences
- mixed at $-5 \,\mathrm{dB}$ SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory (unknown realizations)

Evaluation:

 \checkmark Measure HIT-FA, which correlates with speech intelligibility

Segregation system:

GMM classifier trained with linear or logarithmic AMS features

Training:

- 100 HINT sentences
- mixed at -5, 0, 5 dB SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory

Testing:

- 60 HINT sentences
- mixed at $-5:5:20\,\mathrm{dB}$ SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory (unknown realizations)

Evaluation:

 \checkmark Measure HIT-FA, which correlates with speech intelligibility

How to estimate the IBM in realistic scenarios?

- Influence of feature representation
- ✓ Generalization to *unseen* acoustic conditions
- ? Contribution of spectrotemporal context

How to estimate the IBM in realistic scenarios?

- Influence of feature representation
- ✓ Generalization to *unseen* acoustic conditions
- ? Contribution of spectrotemporal context

 The IBM is usually estimated in each T-F unit independently (Kim et al., 2009; Han and Wang, 2012)

- The IBM is usually estimated in each T-F unit independently (Kim et al., 2009; Han and Wang, 2012)
 - Speech occupies neighboring T-F units, so-called *glimpses* (Cooke, 2005, 2006)

- The IBM is usually estimated in each T-F unit independently (Kim et al., 2009; Han and Wang, 2012)
 - Speech occupies neighboring T-F units, so-called *glimpses* (Cooke, 2005, 2006)

Approach:

► Use *posterior* of GMM-based segregation system as new feature

- The IBM is usually estimated in each T-F unit independently (Kim et al., 2009; Han and Wang, 2012)
 - Speech occupies neighboring T-F units, so-called *glimpses* (Cooke, 2005, 2006)

Approach:

- ► Use *posterior* of GMM-based segregation system as new feature
- Analyze the effect of across-time and frequency integration

- The IBM is usually estimated in each T-F unit independently (Kim et al., 2009; Han and Wang, 2012)
 - Speech occupies neighboring T-F units, so-called *glimpses* (Cooke, 2005, 2006)

Approach:

- ► Use *posterior* of GMM-based segregation system as new feature
- Analyze the effect of across-time and frequency integration
- Investigate influence of different window shapes

- The IBM is usually estimated in each T-F unit independently (Kim et al., 2009; Han and Wang, 2012)
 - Speech occupies neighboring T-F units, so-called *glimpses* (Cooke, 2005, 2006)

Approach:

- ► Use *posterior* of GMM-based segregation system as new feature
- Analyze the effect of across-time and frequency integration
- Investigate influence of different window shapes

Segregation system:

- ▶ GMM classifier trained with linear or logarithmic AMS features
- Investigate role of spectro-temporal integration window

Segregation system:

- ▶ GMM classifier trained with linear or logarithmic AMS features
- Investigate role of spectro-temporal integration window

Training:

- 100 HINT sentences
- mixed at -5, 0, 5 dB SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory

Segregation system:

- GMM classifier trained with linear or logarithmic AMS features
- Investigate role of spectro-temporal integration window

Training:

- 100 HINT sentences
- mixed at -5, 0, 5 dB SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory

Testing:

- 60 HINT sentences
- mixed at $-5:5:20 \,\mathrm{dB}$ SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory (unknown realizations)

Segregation system:

- ► GMM classifier trained with linear or logarithmic AMS features
- Investigate role of spectro-temporal integration window

Training:

- 100 HINT sentences
- mixed at -5, 0, 5 dB SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory

Testing:

- 60 HINT sentences
- mixed at $-5:5:20 \,\mathrm{dB}$ SNR
- ICRA1, ICRA7, PSAM 8Hz, traffic, music, destroyer, factory (unknown realizations)

Evaluation:

 \checkmark Measure HIT-FA, which correlates with speech intelligibility

Table: HIT - FA % for different window shapes using $\Delta t=3$ and $\Delta f=9.$

Window shape	# T-F units	lin AMS	log AMS
Rectangle	24.6	63.0	67.5

Table: HIT - FA % for different window shapes using $\Delta t = 3$ and $\Delta f = 9$.

Window shape	# T-F units	lin AMS	log AMS
Rectangle	24.6	63.0	67.5
Rectangle causal	16.4	60.0	67.2

Table: HIT - FA % for different window shapes using $\Delta t=3$ and $\Delta f=9.$

Window shape	# T-F units	lin AMS	log AMS
Rectangle	24.6	63.0	67.5
Rectangle causal	16.4	60.0	67.2
Plus	10.2	60.8	66.8

Table: HIT - FA % for different window shapes using $\Delta t=3$ and $\Delta f=9.$

Window shape	# T-F units	lin AMS	log AMS
Rectangle	24.6	63.0	67.5
Rectangle causal	16.4	60.0	67.2
Plus	10.2	60.8	66.8
Plus causal	9.2	59.3	66.8

Effect of spectro-temporal integration

Effect of spectro-temporal integration

Effect of spectro-temporal integration

Effect of spectro-temporal integration

✓ Approach cocktail-party problem by combining knowledge about auditory processing with supervised learning strategies

- ✓ Approach cocktail-party problem by combining knowledge about auditory processing with supervised learning strategies
- ✓ Auditory-inspired modulation features provide higher segregation performance than higher-dimensional variants

- ✓ Approach cocktail-party problem by combining knowledge about auditory processing with supervised learning strategies
- ✓ Auditory-inspired modulation features provide higher segregation performance than higher-dimensional variants
- ✓ Feature normalization allows generalization to unseen SNRs

- ✓ Approach cocktail-party problem by combining knowledge about auditory processing with supervised learning strategies
- ✓ Auditory-inspired modulation features provide higher segregation performance than higher-dimensional variants
- ✓ Feature normalization allows generalization to unseen SNRs
- ✓ Spectro-temporal integration substantially improves segregation performance