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Segregation in the time-frequency (T-F) domain

The concept of the ideal binary mask (IBM):
1 Segmentation: Decompose input into individual T-F units

2 Grouping: Identify reliable T-F units based on a priori SNR

Applications of the IBM:

I Improve speech intelligibility in noise
(Brungart et al., 2006; Li and Loizou, 2008; Kjems et al., 2009)

I Automatic speech recognition and speaker identification
(Cooke et al., 2001; May et al., 2012)
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How to estimate the IBM in realistic scenarios?
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Auditory-inspired features for speech segregation

I Recent studies exploit between 45-90 feature dimensions
(Kim et al., 2009; Han and Wang, 2012; Wang and Wang, 2013; Healy et al., 2013)

Contribution of individual features is difficult to assess

I All studies used linear amplitude modulation spectrogram (AMS)
features (Kollmeier and Koch, 1994; Tchorz and Kollmeier, 2003)

Not consistent with psychoacoustic data on modulation detection
(Bacon and Grantham, 1989; Dau et al., 1997; Ewert and Dau, 2000)

Approach:

1 Analyze role of modulation features for speech segregation
2 Compare linearly- and logarithmically-scaled modulation filters
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Amplitude modulation spectrogram (AMS)
1 Compute spectrogram based on 4 ms segments

2 Analyze 25 auditory filters between 80 and 8000 Hz
3 Apply modulation filterbank

linear AMS features
I 2D spectrogram
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Amplitude modulation spectrogram (AMS)
1 Compute spectrogram based on 4 ms segments
2 Analyze 25 auditory filters between 80 and 8000 Hz
3 Apply modulation filterbank

linear AMS features
I 15 filters, linear scale
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logarithmic AMS features
I 9 filters, logarithmic scale
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Amplitude modulation spectrogram (AMS)
1 Compute spectrogram based on 4 ms segments
2 Analyze 25 auditory filters between 80 and 8000 Hz
3 Apply modulation filterbank

linear AMS features
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Segregation experiment I

Speech segregation system:
I GMM classifier trained with linear or logarithmic AMS features

Training:
I 100 HINT sentences
I mixed at −5, 0, 5 dB SNR
I ICRA1, ICRA7, PSAM8Hz,

traffic, music, destroyer,
factory

Testing:
I 60 HINT sentences
I mixed at −5 dB SNR
I ICRA1, ICRA7, PSAM8Hz,

traffic, music, destroyer,
factory (unknown realizations)

Evaluation:
X Measure HIT-FA, which correlates with speech intelligibility
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Contribution of individual modulation filters

I Noisy speech at −5 dB SNR

7th SpiN Workshop 8.1.2015 Computational speech segregation Auditory-inspired AMS features 7 / 19



Contribution of individual modulation filters

I Noisy speech at −5 dB SNR

7th SpiN Workshop 8.1.2015 Computational speech segregation Auditory-inspired AMS features 7 / 19



Contribution of individual modulation filters

I Noisy speech at −5 dB SNR

7th SpiN Workshop 8.1.2015 Computational speech segregation Auditory-inspired AMS features 7 / 19



Contribution of individual modulation filters

I Noisy speech at −5 dB SNR

7th SpiN Workshop 8.1.2015 Computational speech segregation Auditory-inspired AMS features 7 / 19



Contribution of individual modulation filters

I Noisy speech at −5 dB SNR

7th SpiN Workshop 8.1.2015 Computational speech segregation Auditory-inspired AMS features 7 / 19
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Speech segregation performance
I Performance averaged across all 7 background noises
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IBM estimation: Noisy speech at 0 dBSNR
IBM

IBM

lin AMS logAMS
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Exploiting contextual information

I The IBM is usually estimated in
each T-F unit independently
(Kim et al., 2009; Han and Wang, 2012)

Speech occupies neighboring
T-F units, so-called glimpses
(Cooke, 2005, 2006)

Approach:

I Use posterior of GMM-based segregation system as new feature
I Analyze the effect of across-time and frequency integration
I Investigate influence of different window shapes
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Segregation experiment II

Segregation system:
I GMM classifier trained with linear or logarithmic AMS features
I Investigate role of spectro-temporal integration window

Training:
I 100 HINT sentences
I mixed at −5, 0, 5 dB SNR
I ICRA1, ICRA7, PSAM8Hz,

traffic, music, destroyer,
factory

Testing:
I 60 HINT sentences
I mixed at −5 : 5 : 20 dB SNR
I ICRA1, ICRA7, PSAM8Hz,

traffic, music, destroyer,
factory (unknown realizations)

Evaluation:
X Measure HIT-FA, which correlates with speech intelligibility
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Effect of spectro-temporal window size

7th SpiN Workshop 8.1.2015 Computational speech segregation Spectro-temporal integration 15 / 19



Effect of spectro-temporal window size

7th SpiN Workshop 8.1.2015 Computational speech segregation Spectro-temporal integration 15 / 19



Effect of spectro-temporal window shape

Table: HIT - FA % for different window shapes using ∆t = 3 and ∆f = 9.

Window shape # T-F units lin AMS logAMS

Rectangle 24.6 63.0 67.5
Rectangle causal 16.4 60.0 67.2

Plus 10.2 60.8 66.8
Plus causal 9.2 59.3 66.8
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IBM estimation: Noisy speech at 0 dBSNR
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Conclusions

X Approach cocktail-party problem by combining knowledge about
auditory processing with supervised learning strategies

X Auditory-inspired modulation features provide higher
segregation performance than higher-dimensional variants

X Feature normalization allows generalization to unseen SNRs

X Spectro-temporal integration substantially improves segregation
performance
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