

Utilization of the Lombard effect for the intelligibility enhancement of telephone speech

Emma Jokinen, Paavo Alku

Department of Signal Processing and Acoustics Aalto University, Finland

emma.jokinen@aalto.fi

January 8, 2015

Introduction

- In mobile communications, the quality and intelligibility of the speech signal can be degraded by many factors, e.g.
 - The transmission through the radio channel and the low bit-rate coding used
 - Environmental noise in one or both ends of the communication channel

Figure adapted from [Sauert et al. 2006]

Post-processing of telephone speech

- Signal processing methods applied at the receiving side of the communication channel
- Do not require any changes to existing speech codecs
- Used to combat the effect of degradations on quality and intelligibility
- Special requirements for algorithms
 - Real-time processing in short speech frames
 - Low computational complexity

Quality vs. intelligibiility

- Traditionally post-processing methods are intended for quality enhancement, for instance
 - Suppression of quantization noise
 - Reduction of far-end noise in the signal
- In adverse background noise conditions, the intelligibility of speech is severely compromised
- \rightarrow Methods especially designed for intelligibility enhancement are needed

Intelligibility enhancement

- Good results have been achieved with fixed high-pass filtering [Hall and Flanagan 2010]
- More advanced techniques are based on modelling how humans hear or understand speech using, e.g.
 - Speech intelligibility index [Sauert and Vary 2010; Taal et al. 2013]
 - Glimpse proportion [Tang and Cooke 2012]
 - Auditory models [Taal et al. 2014]
- Few techniques model the Lombard effect, i.e., modifying the production of speech by humans in adverse conditions
- By imitating the Lombard effect, hopefully more natural-sounding modifications can be achieved

Proposed Lombard modelling

The Lombard effect consists of multiple time and frequency-domain modifications, e.g.

- Increase in F0
- Decrease in spectral tilt
- Changes in formant frequencies
- The change in spectral tilt has been shown to be important for the intelligibility increase in Lombard speech [Lu and Cooke 2009]
- A statistical, GMM-based mapping of spectral tilt from normal to Lombard speech is proposed [Jokinen et al. 2014a;b]

Proposed Lombard modelling

Proposed Lombard modelling

Spectral tilt estimation

- 1. Dumbing filter (DMF) [Mizuno and Abe 1995]
 - $H(z) = 1/(1 gz^{-1})^2$, where g depends on the autocorrelation coefficients
- 2. Stabilized weighted linear prediction (SWLP) [Magi et al. 2009]
 - All-pole modelling technique where the square of the residual is temporally weighted
- 3. Two-stage LP (2LP) [Jokinen et al. 2012]
 - 20th order LP followed by 6th order LP
- 4. Two-stage selective LP (2SLP)
 - 2LP where first LP analysis is frequency selective
- 5. 1/3-octave band energy fit (OCT) [Lu and Cooke 2009]
 - All-pole filter fit to 1/3-octave band energies
- 6. Telephone sub-band magnitude fit (TSF) [Kontio et al. 2007]
 - All-pole filter fit to average magnitudes of sub-bands

Proposed Lombard modelling Spectral tilt estimation

Proposed Lombard modelling GMM mapping

- Gaussian mixtures with M = {5, 10, 50, 100} full-covariance components considered
- Both the parameter representation (LP, LSF, RC and LAR) and number of components were varied
- The model parameters were trained with the expectation-maximization algorithm

Proposed Lombard modelling Speech material

Two Finnish databases of parallel normal and Lombard recordings

- Training database: 360 sentences from 6 speakers (3 male)
- Development database: short recordings from 18 speakers (9 male)
- A subset of the training data was selected utilizing the speech intelligibility index
- All samples were pre-processed to resemble narrowband telephone speech
- Voiced frames of normal and Lombard samples were aligned using dynamic time warping

Proposed Lombard modelling Selected GMM mapping

The best models were selected based on explained variance (R²) and log-spectral distortion

	DMF	SWLP	2LP	OCT	TSF
Parameter representation	RC	LSF	LSF	LSF	LSF
Number of mixtures	5	10	10	50	50
R^2	0.97	0.99	0.99	0.91	0.95

Subjective evaluation

- Finnish sentence material with 4 speakers (2 male)
- Samples were preprocessed to resemble narrowband telephone speech
- 10 listeners
- The evaluation consisted of
 - 1. a word-error rate (WER) test with two types of noise
 - Car noise (SNR levels: -5 dB, and -10 dB)
 - Factory noise (SNR levels: 0 dB, and -5 dB)
 - 2. a pair comparison test concerning the overall quality

Results WER test

Results Preference test

Proposed Lombard modelling Extrapolation

- $\rightarrow\,$ The original GMM models trained with SWLP features were extrapolated
 - Linear extrapolation of the component-conditional Lombard vector means $\vec{\mu}'_{y|i} = (\vec{\mu}_{y|i} \vec{\mu}_{x|i})\gamma + \vec{\mu}_{x|i}$

where γ controls the amount of extrapolation

- The maximum γ was chosen by restricting the number of resonances in the output
- GMMs with 5 and 10 components were considered with LSF parameters

Extrapolated Lombard modelling

Subjective evaluation

- Finnish sentence material with 4 speakers (2 male)
- Samples were preprocessed to resemble narrowband telephone speech
- 10 listeners
- The evaluation consisted of
 - 1. a word-error rate (WER) test with two types of noise
 - Car noise (SNR levels: -5 dB, and -10 dB)
 - Factory noise (SNR levels: 0 dB, and -5 dB)
 - 2. a pair comparison test concerning the overall quality

Results WER test

Results Preference test

Unprocessed Unprocessed Unprocessed Unprocessed No extrapolation No extrapolation No extrapolation Fixed high-pass filter Fixed high-pass filter Mild extrapolation

essed -		
essed -		
essed -	-	
essed -	-	
ation -		
ation -		
ation -	-	
filter -		
filter -	-	
ation -		

No extrapolation Fixed high-pass filter Mild extrapolation Strong extrapolation Fixed high-pass filter Mild extrapolation Strong extrapolation Mild extrapolation Strong extrapolation Strong extrapolation

Conclusion

- GMM-based post-processing method was proposed for intelligibility enhancement of telephone speech
- The maximal intelligibility gain of spectral tilt modification was evaluated by extrapolating the mapping
- Mild extrapolation provided similar improvement as high-pass filtering
- A production-based statistical mapping can follow natural speaker behavior in different noise conditions

References

- J.L. Hall and J.L. Flanagan. Intelligibility and listener preference of telephone speech in the presence of babble noise. J. Acoust. Soc. Amer., 127(1): 280–285, 2010.
- E. Jokinen, P. Alku, and M. Vainio. Lombard-motivated post-filtering method for the intelligibility enhancement of telephone speech. In Proc. Interspeech, 2012.
- E. Jokinen, U. Remes, M. Takanen, K. Palomäki, M. Kurimo, and P. Alku. Spectral tilt modelling with GMMs for intelligibility enhancement of narrowband telephone speech. In Proc. Interspeech, pages 2036–2040, 2014a.
- E. Jokinen, U. Remes, M. Takanen, K. Palomäki, M. Kurimo, and P. Alku. Spectral tilt modelling with extrapolated GMMs for intelligibility enhancement of narrowband telephone speech. In Proc. IWAENC, 2014b.
- J. Kontio, L. Laaksonen, and P. Alku. Neural network-based artificial bandwidth expansion of speech. IEEE Trans. Audio, Speech, Lang. Process., 15(3): 873–881, 2007.
- Y. Lu and M. Cooke. The contribution of changes in F0 and spectral tilt to increased intelligibility of speech produced in noise. Speech Commun., 51(12): 1253–1262, 2009.
- C. Magi, J. Pohjalainen, T. Bäckström, and P. Alku. Stabilised weighted linear prediction. Speech Commun., 51(5):401-411, 2009.
- H. Mizuno and M. Abe. Voice conversion algorithm based on piecewise linear conversion rules of formant frequency and spectrum tilt. Speech Commun., 16(2):153–164, 1995.
- B. Sauert and P. Vary. Recursive closed-form optimization of spectral audio power allocation for near end listening enhancement. In ITG-Fachtagung Sprachkommunikation, 2010.
- B. Sauert, G. Enzner, and P. Vary. Near end listening enhancement with strict loudspeaker output power constraining. In Proc. IWAENC, 2006.
- C.H. Taal, J. Jensen, and A. Leijon. On optimal linear filtering of speech for near-end listening enhancement. IEEE Signal Process. Lett., 20(3):225–228, 2013.
- C.H. Taal, R.C. Hendriks, and R. Heusdens. Speech energy redistribution for intelligibility improvement in noise based on a perceptual distortion measure. Comput., speech, lang., 28(4):858 – 872, 2014.
- Y. Tang and M. Cooke. Optimised spectral weightings for noise-dependent speech intelligibility enhancement. In Proc. Interspeech, 2012.