Kurt Steinmetzger & Stuart Rosen

The role of periodicity in perceiving speech in quiet and in background noise

Speech in Noise 2015 Workshop, Copenhagen, 8–9 January

1. Segregating speech and noise

Speech consists of a mix of periodic (*voiced*) and aperiodic (*unvoiced*) segments with very distinct acoustic properties.

1. Segregating speech and noise

Speech consists of a mix of periodic (*voiced*) and aperiodic (*unvoiced*) segments with very distinct acoustic properties.

The tone complexes of voiced speech possess a *pitch* and thus allow the signalling of intonation.

1. Segregating speech and noise

Speech consists of a mix of periodic (*voiced*) and aperiodic (*unvoiced*) segments with very distinct acoustic properties.

The tone complexes of voiced speech possess a *pitch* and thus allow the signalling of intonation.

Harmonicity *adds coherence* to a sound stream and it thus seems reasonable to assume that periodicity helps to *segregate speech and background noise*.

1. Segregating speech and noise

Speech consists of a mix of periodic (*voiced*) and aperiodic (*unvoiced*) segments with very distinct acoustic properties.

The tone complexes of voiced speech possess a *pitch* and thus allow the signalling of intonation.

Harmonicity *adds coherence* to a sound stream and it thus seems reasonable to assume that periodicity helps to *segregate speech and background noise*.

2. Periodicity and glimpsing

Being able to perceive the temporal finestructure (TFS) in a speech signal has been claimed to be essential to exploit the information in the *dips of a fluctuating masker*.

1. Segregating speech and noise

Speech consists of a mix of periodic (*voiced*) and aperiodic (*unvoiced*) segments with very distinct acoustic properties.

The tone complexes of voiced speech possess a *pitch* and thus allow the signalling of intonation.

Harmonicity *adds coherence* to a sound stream and it thus seems reasonable to assume that periodicity helps to *segregate speech and background noise*.

2. Periodicity and glimpsing

Being able to perceive the temporal finestructure (TFS) in a speech signal has been claimed to be essential to exploit the information in the *dips of a fluctuating masker*.

Ability to glimpse is reduced in hearingimpaired listeners and severely limited in CI users.

1. Segregating speech and noise

Speech consists of a mix of periodic (*voiced*) and aperiodic (*unvoiced*) segments with very distinct acoustic properties.

The tone complexes of voiced speech possess a *pitch* and thus allow the signalling of intonation.

Harmonicity adds coherence to a sound stream and it thus seems reasonable to assume that periodicity helps to segregate speech and background noise.

2. Periodicity and glimpsing

Being able to perceive the temporal finestructure (TFS) in a speech signal has been claimed to be essential to exploit the information in the *dips of a fluctuating masker*.

Ability to glimpse is reduced in hearingimpaired listeners and severely limited in Cl users.

However, it is unclear to date whether TFS information plays a *special role in glimpsing* or is just as important for steady maskers.

Stimuli: speech with and without periodicity

Stimuli: speech with and without periodicity

In quiet *completely periodic* (i.e. fully voiced) speech is less intelligible.

In quiet *completely periodic* (i.e. fully voiced) speech is less intelligible.

No significant difference between noise-vocoded and Dudley-vocoded speech.

In quiet *completely periodic* (i.e. fully voiced) speech is less intelligible.

No significant difference between noise-vocoded and Dudley-vocoded speech.

Results were used to identify conditions with equal intelligibility rates.

In quiet *completely periodic* (i.e. fully voiced) speech is less intelligible.

No significant difference between noise-vocoded and Dudley-vocoded speech.

Results were used to identify conditions with equal intelligibility rates.

Stimuli: noise with and without periodicity

Steady speech-shaped noise

110

10 Hz-modulated speech-shaped noise

Steady harmonic complex

10 Hz-modulated harmonic complex

Stimuli: noise with and without periodicity

Steady speech-shaped noise – no periodicity

110

10 Hz-modulated speech-shaped noise – no periodicity

Steady harmonic complex – completely periodic

10 Hz-modulated harmonic complex – completely periodic

1. Speech Reception Threshold

Aperiodic noise maskers:

Modulation interference when intelligibility of the target speech is lowered (~75%).

1. Speech Reception Threshold

Aperiodic noise maskers:

Modulation interference when intelligibility of the target speech is lowered (~75%).

Fluctuating-masker benefit increases as intelligibility of the target speech approaches ceiling.

1. Speech Reception Threshold

Aperiodic noise maskers:

Modulation interference when intelligibility of the target speech is lowered (~75%).

Fluctuating-masker benefit increases as intelligibility of the target speech approaches ceiling.

1. Speech Reception Threshold

Aperiodic noise maskers:

Modulation interference when intelligibility of the target speech is lowered (~75%).

Fluctuating-masker benefit increases as intelligibility of the target speech approaches ceiling.

1. Speech Reception Threshold

Aperiodic noise maskers:

Modulation interference when intelligibility of the target speech is lowered (~75%).

Fluctuating-masker benefit increases as intelligibility of the target speech approaches ceiling.

Performance improves slightly with more *periodicity in the target speech*.

1. Speech Reception Threshold

Periodic complex maskers:

Better performance (i.e. *lower SRTs*) throughout when masker is periodic.

Same pattern of results: Performance is slightly better with more periodicity in the target speech.

1. Speech Reception Threshold

In summary:

As intelligibility of targets increases from 75% to 100%, SRTs drop by about 25 dB.

Glimpsing requires high intelligibility of target speech.

Periodic maskers are much less effective.

Surprisingly small effect of target periodicity.

2. Fluctuating-Masker Benefit

SRT of *steady masker* minus SRT of *modulated masker*:

Largest benefit when target speech has a mixed source (and intelligibility is at ceiling): ~ 6 dB.

2. Fluctuating-Masker Benefit

SRT of *steady masker* minus SRT of *modulated masker*:

Largest benefit when target speech has a mixed source (and intelligibility is at ceiling): ~ 6 dB.

2. Fluctuating-Masker Benefit

SRT of *steady masker* minus SRT of *modulated masker*:

Largest benefit when target speech has a mixed source (and intelligibility is at ceiling): ~ 6 dB.

More glimpsing when masker is aperiodic.

3. Periodicity Benefit

SRT of *noise masker* minus SRT of *complex masker*:

Largest periodicity benefit of ~11 dB is almost twice the size of max. FMB (~6 dB).

3. Periodicity Benefit

SRT of *noise masker* minus SRT of *complex masker*:

Largest periodicity benefit of ~11 dB is almost twice the size of max. FMB (~6 dB).

Periodicity benefit is larger for steady maskers.

3. Periodicity Benefit

SRT of *noise masker* minus SRT of *complex masker*:

Largest periodicity benefit of ~11 dB is almost twice the size of max. FMB (~6 dB).

Periodicity benefit is larger for steady maskers.

Listeners *always* benefit from periodicity in the masker.

We know from *Experiment 1* that completely periodic speech is quite hard to understand, and that noise-vocoding hardly affects intelligibility rates in quiet.

We know from *Experiment 1* that completely periodic speech is quite hard to understand, and that noise-vocoding hardly affects intelligibility rates in quiet.

How is this reflected by cortical EEG signals:

How does *periodicity* affect the cortical representation of speech?

We know from *Experiment 1* that completely periodic speech is quite hard to understand, and that noise-vocoding hardly affects intelligibility rates in quiet.

How is this reflected by cortical EEG signals:

How does *periodicity* affect the cortical representation of speech?

Can *intelligibility* be measured directly in the brain?

We know from *Experiment 1* that completely periodic speech is quite hard to understand, and that noise-vocoding hardly affects intelligibility rates in quiet.

How is this reflected by cortical EEG signals:

How does *periodicity* affect the cortical representation of speech?

Can *intelligibility* be measured directly in the brain?

Does it take more *effort* to understand speech that sounds unnatural?

We know from *Experiment 1* that completely periodic speech is quite hard to understand, and that noise-vocoding hardly affects intelligibility rates in quiet.

How is this reflected by cortical EEG signals:

How does *periodicity* affect the cortical representation of speech?

Can *intelligibility* be measured directly in the brain?

Does it take more *effort* to understand speech that sounds unnatural?

2. EEG waveforms – periodicity

The *more periodicity*, the *more negative* is the waveform.

2. EEG waveforms – periodicity

The *more periodicity*, the *more negative* is the waveform.

Amplitude differences are present throughout, *no* single components.

2. EEG waveforms – periodicity

The *more periodicity,* the *more negative* is the waveform.

Amplitude differences are present throughout, *no* single components.

Differences in intelligibility have been *controlled* for.

2. EEG waveforms – periodicity

The *more periodicity*, the *more negative* is the waveform.

Amplitude differences are present throughout, *no* single components.

Differences in intelligibility have been *controlled* for.

Auditory cortex seems to be *more sensible* to tonal (periodic) stimuli.

3. EEG waveforms – intelligibility

The *more intelligible* the speech (Fx), the *more negative* is the waveform.

3. EEG waveforms – intelligibility

The *more intelligible* the speech (Fx), the *more negative* is the waveform.

Same pattern as for periodicity, but smaller amplitude differences.

3. EEG waveforms – intelligibility

The *more intelligible* the speech (Fx), the *more negative* is the waveform.

Same pattern as for periodicity, but smaller amplitude differences.

No acoustic differences between the conditions.

4. EEG power spectra – periodicity

Amplitude differences of the EEG waveforms can be explained by *differences in delta power* (1–4 Hz).

4. EEG power spectra – periodicity

Amplitude differences of the EEG waveforms can be explained by *differences in delta power* (1–4 Hz).

No significant differences in baseline window

4. EEG power spectra – periodicity

Amplitude differences of the EEG waveforms can be explained by *differences in delta power* (1–4 Hz).

No significant differences in baseline window, but strongly increased delta power in stimulus window.

4. EEG power spectra – periodicity

Amplitude differences of the EEG waveforms can be explained by *differences in delta power* (1–4 Hz).

No significant differences in baseline window, but strongly increased delta power in stimulus window.

Statistically significant in all conditions except 'FxNxRotated'.

5. EEG power spectra – intelligibility

Amplitude differences of the EEG waveforms can again be explained by *differences in delta power* (1–4 Hz).

5. EEG power spectra – intelligibility

Amplitude differences of the EEG waveforms can again be explained by *differences in delta power* (1–4 Hz).

5. EEG power spectra – intelligibility

Amplitude differences of the EEG waveforms can again be explained by *differences in delta power* (1–4 Hz).

But there are additional differences in the *alpha range* (7–12 Hz).

5. EEG power spectra – intelligibility

Amplitude differences of the EEG waveforms can again be explained by *differences in delta power* (1–4 Hz).

But there are additional differences in the *alpha range* (7–12 Hz).

Alpha power in the baseline window seems to be a *predictor* of intelligibility.

6. EEG oscillation patterns – periodicity

Spectrograms of oscillatory power differences relative to baseline (no 'FxNxRotated').

6. EEG oscillation patterns – periodicity

Spectrograms of oscillatory power differences relative to baseline.

Pattern differs across frequency with strongest effects in the *theta* (4–8 Hz)

6. EEG oscillation patterns – periodicity

Spectrograms of oscillatory power differences relative to baseline.

Pattern differs across frequency with strongest effects in the *theta* (4–8 Hz) and *gamma* (30–100 Hz) bands.

6. EEG oscillation patterns – periodicity

Spectrograms of oscillatory power differences relative to baseline.

Pattern differs across frequency with strongest effects in the *theta* (4–8 Hz) and *gamma* (30–100 Hz) bands.

Fully periodic speech (Fx) strongly differs from other two conditions.

6. EEG oscillation patterns – periodicity

Spectrograms of oscillatory power differences relative to baseline.

Additionally, we found more alpha (8–13 Hz) power in the FxNx condition, possibly reflecting greater ease of processing.

7. EEG oscillation patterns – intelligibility

Spectrograms of oscillatory power differences relative to baseline.

7. EEG oscillation patterns – intelligibility

Spectrograms of oscillatory power differences relative to baseline.

Intelligible speech (*Fx*) has more power at lower frequencies (*delta* and *theta*, 1–8 Hz).

7. EEG oscillation patterns – intelligibility

Spectrograms of oscillatory power differences relative to baseline.

Intelligible speech (*Fx*) has more power at lower frequencies (*delta* and *theta*, 1–8 Hz).

7. EEG oscillation patterns – intelligibility

Spectrograms of oscillatory power differences relative to baseline.

Intelligible speech (*Fx*) has more power at lower frequencies (*delta* and *theta*, 1–8 Hz).

No differences in the *alpha* range observed.

1. Behavioural results

1. Behavioural results

In quiet, *fully voiced speech* is very hard to understand.

1. Behavioural results

In quiet, *fully voiced speech* is very hard to understand.

Listeners benefit greatly from periodicity in the *masker*.

1. Behavioural results

In quiet, *fully voiced speech* is very hard to understand.

Listeners benefit greatly from periodicity in the *masker*.

Periodicity of the *target speech* matters surprisingly little.

1. Behavioural results

In quiet, *fully voiced speech* is very hard to understand.

Listeners benefit greatly from periodicity in the *masker*.

Periodicity of the *target speech* matters surprisingly little.

Glimpsing requires very high intelligibility of the target speech.

1. Behavioural results

2. EEG results

In quiet, *fully voiced speech* is very hard to understand.

Listeners benefit greatly from periodicity in the *masker*.

Periodicity of the *target speech* matters surprisingly little.

Glimpsing requires very high intelligibility of the target speech.

1. Behavioural results

In quiet, *fully voiced speech* is very hard to understand.

Listeners benefit greatly from periodicity in the *masker*.

Periodicity of the *target speech* matters surprisingly little.

Glimpsing requires very high intelligibility of the target speech.

2. EEG results

EEG waveforms were found to be consistently *more negative* with more periodicity

1. Behavioural results

In quiet, *fully voiced speech* is very hard to understand.

Listeners benefit greatly from periodicity in the *masker*.

Periodicity of the *target speech* matters surprisingly little.

Glimpsing requires very high intelligibility of the target speech.

2. EEG results

EEG waveforms were found to be consistently *more negative* with more periodicity

and also for speech that is intelligible.

1. Behavioural results

In quiet, *fully voiced speech* is very hard to understand.

Listeners benefit greatly from periodicity in the *masker*.

Periodicity of the *target speech* matters surprisingly little.

Glimpsing requires very high intelligibility of the target speech.

2. EEG results

EEG waveforms were found to be consistently *more negative* with more periodicity

and also for speech that is intelligible.

Alpha power in the baseline window seems to predict speech intelligibility.

1. Behavioural results

In quiet, *fully voiced speech* is very hard to understand.

Listeners benefit greatly from periodicity in the *masker*.

Periodicity of the *target speech* matters surprisingly little.

Glimpsing requires very high intelligibility of the target speech.

2. EEG results

EEG waveforms were found to be consistently *more negative* with more periodicity

and also for speech that is intelligible.

Alpha power in the baseline window seems to predict speech intelligibility.

Neural oscillation pattern over time depends on both acoustics *and* intelligibility.