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RM-ANOVA on RAU

MIXED-EFFECTS LOGISTIC REGRESSIONINTRODUCTION

Studebaker (1985) introduced the ‘rationalized’ arcsine (RAU) transform as a method to
make proportions suitable for statistical analysis. It produces values numerically close to
the originating percentages. Thirty years later, the transform is still widely applied1 (49
citations in 2014 according to ISI-knowledge), especially by researchers of speech in
noise, and usually before the application of analysis of variance for repeated
measurements (RM-ANOVA). This approach has several shortcomings. Mixed-effects
logistic regression overcomes these limitations.

Invalid error distribution
Hypotheses testing in ANOVA is based on the assumption that the error distribution is
constant and symmetric for different values of the outcome measure. Such is not the case
for RAU scores or percentages that show highest variance around 50 % and less towards
the extremes. For RM-ANOVA, assumptions are more stringent, i.e., the differences
between the repeatedly measured scores should have constant variance. This usually
checked with Mauchly’s test for sphericity, without considering its statistical power or
verifying its assumptions. (The latter would lead to a Droste effect.) To compensate for
violations of RM-ANOVA’s assumptions, the degrees of freedom in the RM-ANOVA’s F-
tests are adjusted. In other words, compensation is based on reducing statistical power.
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Obscuring effects
Consider the situation where the outcome is constant across the conditions A1B1 and A1B2,
but augments across the conditions A2B1 and A2B2. ANOVA will report significant main
effects of A, B as well as their interaction A×B. It appears more elucidating to state that
changes in B has no effect for A=1, but are present for A=2.
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Trivial hypothesis
Many studies express outcomes in terms of RAU scores as a function of speech-to-noise
ratio (Factor A). The resulting psychometric functions (PMF) are evaluated for different
groups of listeners or types of processing (Factor B). Significant main effects of B, and its
interaction effect with A, are falsely interpreted as reflecting effects on the PMF’s position
and shape, respectively. Because ANOVA models without A×B predict an impossible shift
of the psychometric function along the vertical axis, the interaction becomes significant
when B shifts the PMFs along the horizontal axis.

-10 -5 0 5 10

0

25

50

75

100

SNR

c
o

rr
e

c
t 

s
c

o
re

 [
R

A
U

]

    

0

25

50

75

100

c
o

rr
e

c
t 

s
c

o
re

 [
R

A
U

]

ANOVA model
µ A B A×B+ + +
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proportion correctThe RAU transform:

Simple 3-factor ANOVA model:

where:
denotes the estimated RAU score; the global

mean score; and the effects of factors A and B;
the subject effect; i and j the levels within A and B; and
n the various subjects;

where r denotes the RAU score; p the proportion and
N the number of observations on which the proportion
is based.

The logit transform: ML-LR model:

where denotes the estimated performance level,
the regression coefficient; n the various subjects; and

the predictor variables.

ML-LR has three ingredients: a logistic transform; a regression equation; and a mixed-
effects aspect. The logistic transforms gives proportions a range from -∞ to ∞.
Consequently, floor and ceiling effects no longer exist, and the proportions are always
predicted within the 0 to 1 range. Using a 2-base logarithm facilitates interpretation of the
regression coefficients: a one-Berkson unit increase signifies a doubling of correct answers
with a fixed number of errors.
The regression equation estimates performance levels as a linear combination of effects
resulting from the experimental conditions. With dummy coding, effects are expressed
relative to a reference condition (here A1B1).
The n subscript in indicates that this regression coefficient varies across subjects, and
represents the random effect. Commonly a normal-distribution is assumed, and the mean
( ) and variance of this distribution are estimated. If this variance does not differ
significantly from zero, the across-subject variance can be eliminated from the regression
equation. Besides subjects one can include additional random factors, e.g. the speech
items, to compensate and inspect item difficulty.

Unable to deal with unbalanced data
When subjects are unable to provide data in all requested experimental conditions, the
number of observations will vary across conditions. The global mean will be biased, and
the tested hypotheses are rarely of interest.

Consequences of dummy coding:
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ME-LR model
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Correct interactions
Assuming that the PMF has a logistic shape, this function becomes linear after transform.
Consequently, shifting the PMF among the horizontal axis can be translated into a shift
along the vertical axis.

Significance testing
Each set of parameters leads to a set of predicted performance levels . Knowing that
the data follow a binomial distribution, one can calculate the probability of finding the data
given the s, a quantity known as likelihood. The parameters are estimated by
maximizing this likelihood. Their significance can be tested by bootstrapping; by Bayesian
methods; or by looking at changes in the likelihood while adding or removing predictors
variables from the regression equation. Significant predictors should be kept.
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