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Segregation in the time-frequency (T-F) domain =

The concept of the ideal binary mask (IBM):

@ Segmentation: Decompose input into individual T-F units
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@ Segmentation: Decompose input into individual T-F units

® Grouping: ldentify reliable T-F units based on a priori SNR

Applications of the IBM:

» Improve speech intelligibility in noise
(Brungart et al., 2006; Li and Loizou, 2008; Kjems et al., 2009)

» Automatic speech recognition and speaker identification
(Cooke et al., 2001; May et al., 2012)
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Auditory-inspired features for speech segregation =

» Recent studies exploit between 45-90 feature dimensions
(Kim et al., 2009; Han and Wang, 2012; Wang and Wang, 2013; Healy et al., 2013)

@ Contribution of individual features is difficult to assess

» All studies used linear amplitude modulation spectrogram (AMS)
features (Kollmeier and Koch, 1994; Tchorz and Kollmeier, 2003)

@ Not consistent with psychoacoustic data on modulation detection
(Bacon and Grantham, 1989; Dau et al., 1997; Ewert and Dau, 2000)

Approach:
@ Analyze role of modulation features for speech segregation

® Compare linearly- and logarithmically-scaled modulation filters
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Amplitude modulation spectrogram (AMS)
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Segregation system:

» GMM classifier trained with linear or logarithmic AMS features

> Investigate role of spectro-temporal integration window

» 100 HINT sentences » 60 HINT sentences

» mixed at —5,0,5dB SNR » mixed at —5: 5:20dB SNR

» ICRA1, ICRA7, PSAM 8Hz, » ICRA1, ICRA7, PSAM 8Hz,
traffic, music, destroyer, traffic, music, destroyer,
factory ) factory (unknown realizations)l

Evaluation:

v Measure HIT-FA, which correlates with speech intelligibility
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Effect of spectro-temporal window shape

=]
—
=

i

(/)

Table: HIT-FA % for different window shapes using At = 3 and Af = 9.

Window shape

| # T-F units | lin AMS | log AMS

Rectangle \ 24.6 \ 63.0 \

67.5
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Effect of spectro-temporal window shape
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Table: HIT-FA % for different window shapes using At = 3 and Af = 9.

Window shape

| # T-F units | lin AMS | log AMS

Rectangle

24.6

63.0

67.5

Rectangle causal

16.4

60.0

67.2
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Effect of spectro-temporal window shape
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i

le causal

Plus

(t, f) it f

Table: HIT-FA % for different window shapes using At = 3 and Af = 9.

Window shape

| # T-F units | lin AMS | log AMS

Rectangle 24.6 63.0 67.5
Rectangle causal 16.4 60.0 67.2
Plus 10.2 60.8 66.8
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Effect of spectro-temporal window shape

le causal Plus; Plus causal
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Table: HIT-FA % for different window shapes using At = 3 and Af = 9.
Window shape ‘ # T-F units ‘ lin AMS ‘ log AMS

Rectangle 24.6 63.0 67.5
Rectangle causal 16.4 60.0 67.2
Plus 10.2 60.8 66.8

Plus causal 9.2 59.3 66.8
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IBM estimation: Noisy speech at 0 dB SNR
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v Approach cocktail-party problem by combining knowledge about
auditory processing with supervised learning strategies
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Conclusions

v Approach cocktail-party problem by combining knowledge about
auditory processing with supervised learning strategies

v Auditory-inspired modulation features provide higher
segregation performance than higher-dimensional variants

v Feature normalization allows generalization to unseen SNRs

v Spectro-temporal integration substantially improves segregation
performance
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